Publications

Human ESC-derived hemogenic endothelial cells undergo distinct waves of endothelial to hematopoietic transition

Human ESC-derived hemogenic endothelial cells undergo distinct waves of endothelial to hematopoietic transition

Several studies have demonstrated that hematopoietic cells originate from endothelium in early development; however, the phenotypic progression of progenitor cells during human embryonic hemogenesis is not well described. Here, we define the developmental hierarchy among intermediate populations of hematopoietic progenitor cells (HPCs) derived from human embryonic stem cells (hESCs).

Genetic variation in metabolic phenotypes: study designs and applications

Genetic variation in metabolic phenotypes: study designs and applications

Many complex disorders are linked to metabolic phenotypes. Revealing genetic influences on metabolic phenotypes is key to a systems-wide understanding of their interactions with environmental and lifestyle factors in their aetiology, and we can now explore the genetics of large panels of metabolic traits by coupling genome-wide association studies and metabolomics.

Efficient Direct Reprogramming of Mature Amniotic Cells into Endothelial Cells by ETS Factors and TGF beta Suppression

Efficient Direct Reprogramming of Mature Amniotic Cells into Endothelial Cells by ETS Factors and TGF beta Suppression

ETS transcription factors ETV2, FLI1, and ERG1 specify pluripotent stem cells into induced vascular endothelial cells (iVECs). However, iVECs are unstable and drift toward nonvascular cells. We show that human midgestation c-Kit lineage-committed amniotic cells (ACs) can be reprogrammed into vascular endothelial cells (rAC-VECs) without transitioning through a pluripotent state.

iTRAQ-Based Quantitative Protein Expression Profiling and MRM Verification of Markers in Type 2 Diabetes

iTRAQ-Based Quantitative Protein Expression Profiling and MRM Verification of Markers in Type 2 Diabetes

The pathogenesis of Type 2 diabetes mellitus (T2DM) is complex owing to molecular heterogeneity in the afflicted population. Current diagnostic methods rely on blood glucose measurements, which are noninformative with respect to progression of the disease to other associated pathologies. Thus, predicting the risk and development of T2DM-related complications, such as cardiovascular disease, remains a major challenge.

Speed Sensorless Induction Motor Drive With Predictive Current Controller

Speed Sensorless Induction Motor Drive With Predictive Current Controller

Today, speed sensorless modes of operation are becoming standard solutions in the area of electric drives. This paper presents a speed sensorless control system of an induction motor with a predictive current controller.

Quantum resources for hybrid communication via qubit-oscillator states

Quantum resources for hybrid communication via qubit-oscillator states

We investigate a family of qubit-oscillator states as resources for hybrid quantum communication. They result from a mechanism of qubit-controlled displacement on the oscillator. For large displacements, we obtain analytical formulas for entanglement and other nonclassical correlations, such as entropic and geometric discord, in those states.

Intervention in biological phenomena modeled by S-systems

Intervention in biological phenomena modeled by S-systems

Recent years have witnessed extensive research activity in modeling biological phenomena as well as in developing intervention strategies for such phenomena. S-systems, which offer a good compromise between accuracy and mathematical flexibility, are a promising framework for modeling the dynamical behavior of biological phenomena. In this paper, two different intervention strategies, namely direct and indirect, are proposed for the S-system model.

Inverse spectral problems for differential operators on arbitrary compact graphs

Inverse spectral problems for differential operators on arbitrary compact graphs

Inverse problems of spectral analysis are studied for Sturm-Liouville differential operators on arbitrary compact graphs. The uniqueness of recovering operators from their spectra is proved, and a constructive procedure for the solution of this class of inverse problems is provided.

Enhanced compressive response of hybrid Mg-CNT nano-composites

Enhanced compressive response of hybrid Mg-CNT nano-composites

Uniaxial compressive properties of hybrid Mg/Al–CNT nano-composites are studied in the present paper. Hybrid nano-composites were fabricated using powder metallurgy route followed by microwave assisted rapid sintering technique and hot extrusion.

Joint rate, power, and decoding order optimization of multiuser MIMO systems

Joint rate, power, and decoding order optimization of multiuser MIMO systems

We consider multiuser MIMO systems with some of the users having target-rate requirements while the other users are working on best-effort data transmission. Both multiple-access channels (MAC) and broadcast channels (BC) are considered.
RSS
123456789
DeSIGN: Guided Practice for Sign Language

DeSIGN: Guided Practice for Sign Language

Children learn and practice their vocabulary through interaction with parents and friends as well as through formal instruction at school. However, for deaf children, sign language is the main method of communication. Despite the importance of strong vocabulary skills for understanding text, effective verbal communication and integration into society, the average deaf student graduates from American high schools with a fourth grade reading level. This can be partially attributed to the fact that 90% of deaf children are born to hearing parents who are rarely fluent in sign language.

Calcium channels determine how life begins, and ends
Calcium channels determine how life begins, and ends

Calcium channels determine how life begins, and ends

Ongoing work at Weill Cornell Medical College in Qatar (WCMC-Q) is investigating how intracellular calcium (Ca2+) signaling pathways are involved in the very beginning of life as they prepare the egg for fertilization and the initiation of embryogenesis. The National Priorities Research Program-funded work also has wider implications. Since all cells use Ca2+ signals, these studies could impact the treatment of various pathological conditions including infertility, hypertension, and cancer.
Cells in the human body need to be able to sense their environment in order to respond to cues to perform some function. Intercellular signaling, using hormones sent from one part of the body to another, allow, for example, the brain to tell your hand to pick up a pen as neurons in the brain fire action potentials to trigger the relevant muscle actions. For other cells, the message may be to divide or to die if infected by a virus.

Taking gas-to-liquid technology to the next level
Taking gas-to-liquid technology to the next level

Taking gas-to-liquid technology to the next level

In the 1920s, two German scientists—Franz Fischer and Hans Tropsch—developed revolutionary chemical reactions that could transform gas into liquid. These reactions proved particularly valuable to natural gas-based fuel processing. Since the Fischer-Tropsch days, engineers around the world have been working on ways to tweak these gas-to-liquid (GTL) reactions to produce more products, more efficiently and with less environmental impact. An international research team headquartered at Texas A&M University at Qatar (TAMUQ) is making remarkable progress along these lines.

Researchers discover a remarkably easy way to make filters at the nano scale
Researchers discover a remarkably easy way to make filters at the nano scale

Researchers discover a remarkably easy way to make filters at the nano scale

From your average spaghetti strainer to the screen on your windows, filters are a part of our every-day life. In their simplest form, they keep debris out of air and water. Yet as filter technology advances, so does the level of precision around what we can keep out.
Today, it’s possible to create membranes that filter a range of substances on a nano (microscopic) scale, and a QNRF, NPRP grant-funded project has made significant progress in doing just that. A member of the team and advanced research fellow in experimental physics in the Biological and Soft Sciences Department at the University of Cambridge, Dr. Easan Sivaniah, explained:

Researchers build the case for wind and wave studies in Qatar
Researchers build the case for wind and wave studies in Qatar

Researchers build the case for wind and wave studies in Qatar

For the first time, fine detail about the wind and wave conditions around the coast of Qatar has been recorded. By arranging the most sophisticated equipment available on the edge of a 500-meter pier extending into the Gulf, a research team at Texas A&M University at Qatar (TAMUQ) has collected detailed readings of air and wave currents around the peninsula. Their findings highlight a dearth of information on coastal conditions that have the potential to offer vital insights into many sectors.
“The actual research started in trying to understand the relationship between the wind and waves,” said Dr. Reza Sadr, Assistant Professor in the Mechanical Engineering Department at TAMUQ. “Why do we need this? Because there are very poor models to track wind current and predict ocean waves, and this information affects, among other things, marine life, the offshore oil and gas industry and renewable energy initiatives.”
Around the world, the methods for measuring the patterns of wind and waves, also known as the atmospheric surface layer (ASL), are so far based on weather and wind models combined with analysis of the ocean dynamics. Dr. Sadr said that these models, however, need to be fortified with more sophisticated data and analysis for each region in the globe.

RSS