X
GO
en-USar-QA
/ Categories: Publications

Speed Sensorless Induction Motor Drive With Predictive Current Controller

Author(s): Guzinski, Jaroslaw; Abu-Rub, Haitham

Today, speed sensorless modes of operation are becoming standard solutions in the area of electric drives. This paper presents a speed sensorless control system of an induction motor with a predictive current controller. A closed-loop estimation system with robustness against motor parameter variation is used for the control approach. The proposed algorithm has been implemented using field-programmable gate arrays (FPGAs) and a floating-point digital signal processor (DSP). Both computational elements have been integrated on a single board SH65L type and interfaced to the power electronic converter, and the use of proper FPGA and DSP optimizes the cost and computational properties. The novelty of the presented solution is the integration of a simple observer for both speed/flux and current control purposes, and the obtained results have been improved in comparison to the previous works. An overview of the test bench consisting of a digital control board, as well as computational algorithms and system benchmarks, is presented. All the tests were performed experimentally for 5.5-kW electric drives

 

Source: IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
Previous Article Quantum resources for hybrid communication via qubit-oscillator states
Next Article iTRAQ-Based Quantitative Protein Expression Profiling and MRM Verification of Markers in Type 2 Diabetes
Print
4056 Rate this article:
No rating

Name:
Email:
Subject:
Message:
x
DeSIGN: Guided Practice for Sign Language

DeSIGN: Guided Practice for Sign Language

Children learn and practice their vocabulary through interaction with parents and friends as well as through formal instruction at school. However, for deaf children, sign language is the main...
Calcium channels determine how life begins, and ends
Calcium channels determine how life begins, and ends

Calcium channels determine how life begins, and ends

Ongoing work at Weill Cornell Medical College in Qatar (WCMC-Q) is investigating how intracellular calcium (Ca2+) signaling pathways are involved in the very beginning of life as they prepare the...
Taking gas-to-liquid technology to the next level
Taking gas-to-liquid technology to the next level

Taking gas-to-liquid technology to the next level

In the 1920s, two German scientists—Franz Fischer and Hans Tropsch—developed revolutionary chemical reactions that could transform gas into liquid. These reactions proved particularly...
Researchers build the case for wind and wave studies in Qatar
Researchers build the case for wind and wave studies in Qatar

Researchers build the case for wind and wave studies in Qatar

For the first time, fine detail about the wind and wave conditions around the coast of Qatar has been recorded. By arranging the most sophisticated equipment available on the edge of a 500-meter...
RSS