X
GO
en-USar-QA
/ Categories: Publications

Intervention in biological phenomena modeled by S-systems

uthor(s): Meskin, N (Meskin, Nader); Nounou, HN (Nounou, Hazem N.); Nounou, M (Nounou, Mohamed); Datta, A (Datta, Aniruddha); Dougherty, ER (Dougherty, Edward R.)

Recent years have witnessed extensive research activity in modeling biological phenomena as well as in developing intervention strategies for such phenomena. S-systems, which offer a good compromise between accuracy and mathematical flexibility, are a promising framework for modeling the dynamical behavior of biological phenomena. In this paper, two different intervention strategies, namely direct and indirect, are proposed for the S-system model. In the indirect approach, the prespecified desired values for the target variables are used to compute the reference values for the control inputs, and two control algorithms, namely simple sampled-data control and model predictive control (MPC), are developed for transferring the control variables from their initial values to the computed reference ones. In the direct approach, a MPC algorithm is developed that directly guides the target variables to their desired values. The proposed intervention strategies are applied to the glycolytic-glycogenolytic pathway and the simulation results presented demonstrate the effectiveness of the proposed schemes.


Source: IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 58(5): 1260-1267 MAY 2011


Previous Article Inverse spectral problems for differential operators on arbitrary compact graphs
Next Article Quantum resources for hybrid communication via qubit-oscillator states
Print
2544 Rate this article:
No rating

Name:
Email:
Subject:
Message:
x
DeSIGN: Guided Practice for Sign Language

DeSIGN: Guided Practice for Sign Language

Children learn and practice their vocabulary through interaction with parents and friends as well as through formal instruction at school. However, for deaf children, sign language is the main...
Calcium channels determine how life begins, and ends
Calcium channels determine how life begins, and ends

Calcium channels determine how life begins, and ends

Ongoing work at Weill Cornell Medical College in Qatar (WCMC-Q) is investigating how intracellular calcium (Ca2+) signaling pathways are involved in the very beginning of life as they prepare the...
Taking gas-to-liquid technology to the next level
Taking gas-to-liquid technology to the next level

Taking gas-to-liquid technology to the next level

In the 1920s, two German scientists—Franz Fischer and Hans Tropsch—developed revolutionary chemical reactions that could transform gas into liquid. These reactions proved particularly...
Researchers build the case for wind and wave studies in Qatar
Researchers build the case for wind and wave studies in Qatar

Researchers build the case for wind and wave studies in Qatar

For the first time, fine detail about the wind and wave conditions around the coast of Qatar has been recorded. By arranging the most sophisticated equipment available on the edge of a 500-meter...
RSS