X
GO
en-USar-QA
/ Categories: Publications

On the Diversity Enhancement and Power Balancing of Per-Subcarrier Transmit Antenna Selection in OFDM Systems

Author(s): Park, KH (Park, Ki-Hong); Ko, YC (Ko, Young-Chai); Alouini, MS (Alouini, Mohamed-Slim)

In this paper, we consider multicarrier systems with multiple transmit antennas under a power-balancing constraint. Applying transmit antenna selection and discrete rate-adaptive modulation using M-ary quadrature-amplitude modulation (QAM) according to the channel variation per subcarrier, we develop an optimal transmit antenna selection scheme in terms of the maximum spectral efficiency, where all the possible groupings for sending the same information-bearing signals in a group of subcarriers are searched, and the groups of subcarriers for providing the frequency diversity gain are formed. In addition, we propose a suboptimal method for reducing the computational complexity of the optimal method. The suboptimal scheme considers only the subcarriers under outage, and these subcarriers are sequentially combined until the required signal-to-noise ratio (SNR) is met. Numerical results show that the proposed suboptimal method with diversity combining outperforms the optimal antenna selection without diversity combining, as introduced in the work of Sandell and Coon, particularly for low-SNR regions, and offers the spectral efficiency close to the optimal method with diversity combining while maintaining lower complexity.


Source: IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 60(5): 2405-2410 JUN 2011

Previous Article Exact spatiotemporal wave and soliton solutions to the generalized (3+1)-dimensional nonlinear Schrodinger equation with linear potential
Next Article Subwavelength optical microscopy in the far field
Print
2106 Rate this article:
No rating

Name:
Email:
Subject:
Message:
x
DeSIGN: Guided Practice for Sign Language

DeSIGN: Guided Practice for Sign Language

Children learn and practice their vocabulary through interaction with parents and friends as well as through formal instruction at school. However, for deaf children, sign language is the main...
Calcium channels determine how life begins, and ends
Calcium channels determine how life begins, and ends

Calcium channels determine how life begins, and ends

Ongoing work at Weill Cornell Medical College in Qatar (WCMC-Q) is investigating how intracellular calcium (Ca2+) signaling pathways are involved in the very beginning of life as they prepare the...
Taking gas-to-liquid technology to the next level
Taking gas-to-liquid technology to the next level

Taking gas-to-liquid technology to the next level

In the 1920s, two German scientists—Franz Fischer and Hans Tropsch—developed revolutionary chemical reactions that could transform gas into liquid. These reactions proved particularly...
Researchers build the case for wind and wave studies in Qatar
Researchers build the case for wind and wave studies in Qatar

Researchers build the case for wind and wave studies in Qatar

For the first time, fine detail about the wind and wave conditions around the coast of Qatar has been recorded. By arranging the most sophisticated equipment available on the edge of a 500-meter...
RSS