Publications

Haya H Al Muhannadi
/ Categories: Publications

Ca(2+) signaling, genes and the cell cycle

Author(s): Machaca, K (Machaca, Khaled)

Changes in the concentration and spatial distribution of Ca2+ ions in the cytoplasm constitute a ubiquitous intracellular signaling module in cellular physiology. With the advent of Ca2+ dyes that allow direct visualization of Ca2+ transients, combined with powerful experimental tools such as electrophysiological recordings, intracellular Ca2+ transients have been implicated in practically every aspect of cellular physiology, including cellular proliferation. Ca2+ signals are associated with different phases of the cell cycle and interfering with Ca2+ signaling or downstream pathways often disrupts progression of the cell cycle. Although there exists a dependence between Ca2+ signals and the cell cycle the mechanisms involved are not well defined and given the cross-talk between Ca2+ and other signaling modules, it is difficult to assess the exact role of Ca2+ signals in cell cycle progression. Two exceptions however, include fertilization and T-cell activation, where well-defined roles for Ca2+ signals in mediating progression through specific stages of the cell cycle have been clearly established. In the case of T-cell activation Ca2+ regulates entry into the cell cycle through the induction of gene transcription.


Source: CELL CALCIUM 49(5)SI: 323-330 MAY 2011

Previous Article Quantum state engineering by a coherent superposition of photon subtraction and addition
Next Article Reversing entanglement change by a weak measurement
Print
3556 Rate this article:
No rating

Theme picker

DeSIGN: Guided Practice for Sign Language

DeSIGN: Guided Practice for Sign Language

Children learn and practice their vocabulary through interaction with parents and friends as well as through formal instruction at school. However, for deaf children, sign language is the main...
Calcium channels determine how life begins, and ends
Calcium channels determine how life begins, and ends

Calcium channels determine how life begins, and ends

Ongoing work at Weill Cornell Medical College in Qatar (WCMC-Q) is investigating how intracellular calcium (Ca2+) signaling pathways are involved in the very beginning of life as they prepare the...
Taking gas-to-liquid technology to the next level
Taking gas-to-liquid technology to the next level

Taking gas-to-liquid technology to the next level

In the 1920s, two German scientists—Franz Fischer and Hans Tropsch—developed revolutionary chemical reactions that could transform gas into liquid. These reactions proved particularly...
Researchers build the case for wind and wave studies in Qatar
Researchers build the case for wind and wave studies in Qatar

Researchers build the case for wind and wave studies in Qatar

For the first time, fine detail about the wind and wave conditions around the coast of Qatar has been recorded. By arranging the most sophisticated equipment available on the edge of a 500-meter...
RSS

Theme picker